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ASYMPTOTIC MODELS OF INTERNAL STATIONARY WAVES

UDC 532.592N. I. Makarenko and Zh. L. Mal’tseva

Equations of stationary long waves on the interface between a homogeneous fluid and an exponentially
stratified fluid are considered. An equation of the second-order approximation of the shallow water
theory inheriting the dispersion properties of the full Euler equations is used as the basic model.
A family of asymptotic submodels is constructed, which describe three different types of bifurcation
of solitary waves at the boundary points of the continuous spectrum of the linearized problem.
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Introduction. Equations of an inviscid two-layer fluid with a piecewise-constant density experiencing a
jump at the interface between the layers are used (see [1, 2]) as a mathematical model of internal waves in a
pynocline. In this model, solitary waves and smooth bores are described by the equation of the second-order
approximation of the shallow water theory, which was derived by Ovsyannikov [3]. Such an equation was obtained
in [4] for the case with no slipping of the layers in the main flow. A similar approximation for long waves in a
fluid with a piecewise-constant Brunt–Väisälä frequency was considered in [5]. It was noted [6] that asymptotic
series for solitary waves are highly sensitive to small perturbations of the density field. The main objective of the
present work is to estimate the influence of weak continuous stratification on the parameters of nonlinear waves on
the interface. The behavior of the critical parameters of wave motion with stratification vanishing in one of the
layers is studied. The density of the fluid in the second layer is assumed to be constant. The basic feature of this
limit transition is the concentration of the spectra of higher modes in a narrow band of the boundary-layer type in
the plane of bifurcation parameters. The presence of such a layer substantially affects the asymptotic behavior of
solitary waves of the leading mode. In particular, a region of parameters is found, where the branching of solutions
at the points of the spectrum boundary differs from the bifurcation of solitary waves to plateau- and bore-type
waves for the model of a two-layer fluid [7, 8].

1. Initial Equations. Plane stationary flows of an ideal incompressible inhomogeneous fluid are described
by the Euler equations

ρ(uux + vuy) + px = 0, ρ(uvx + vvy) + py = −ρg,

ux + vy = 0, uρx + vρy = 0,
(1)

where ρ is the fluid density, u and v are the velocity-vector components, and p is the pressure. We consider a
two-layer flow in the region bounded by a rigid horizontal bottom y = −h1 and by a top cover y = h2 (Fig. 1). The
interface has the shape y = η(x), the value η = 0 corresponding to the waveless regime. As x → −∞, the velocity
vector of the fluid (u, v) in the jth layer tends to a constant vector (uj , 0) (uj is the wave velocity with respect to
the corresponding layer; j = 1, 2). If the stream function ψ is introduced for the velocity field u = ψy and v = −ψx,
system (1) reduces to the second-order quasi-linear elliptical equation (Dubreil-Jacotin–Long equation) [1, 2]

ρ(ψ)(ψxx + ψyy) + ρ′(ψ)(gy + |∇ψ|2/2) = H ′(ψ).
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Fig. 1. Schematic of fluid motion.

Here H(ψ) = ρ(ψ)b(ψ), where b(ψ) is the Bernoulli function; the dependence of the fluid density on the stream
function is defined by the density distribution along the streamlines in the undisturbed flow: ρ(ψ) = ρ∞(ψ/uj) in
the layer with the number j. The expression for density in the main flow is assumed to be

ρ∞(y) =

{
ρ1, −h1 < y < 0,

ρ2 exp (−N2y/g), 0 < y < h2,

where N = const is the Brunt–Väisälä frequency, and the constants ρj > 0 satisfy the inequality ρ2 < ρ1. For
N = 0, this density distribution ensures a usual two-layer stratification with constant densities in the layers; for
N �= 0, the Bernoulli function b is constant in the lower layer (b = u2

1/2) and has the following form in the upper
layer:

b(ψ) =
1
2
u2

2 +
gψ

u2
+

g2

N2

(
1 − exp

{N2ψ2

gu2

})
.

The stream function is normalized to the condition ψ = 0 on the interface. Then, the boundary condition
ψ(x,−h1) = −u1h1 should be satisfied on the bottom, and the condition ψ(x, h2) = u2h2 should be satisfied
on the rigid cover. By virtue of the Bernoulli equation

|∇ψ|2/2 + p/ρ(ψ) + gy = b(ψ),

the pressure p is expressed via the function ψ; therefore, the condition of pressure continuity on the interface
y = η(x) yields the nonlinear boundary condition for the stream function [ρ(ψ)(|∇ψ|2 + 2gy − 2b(ψ))] = 0 (the
square brackets indicate a jump in a quantity). We also note that the conservation of the total horizontal momentum
of the two-layer fluid yields the integral relation

h2∫
−h1

(
p+ ρ(ψ)ψ2

y

)
dy = C, (2)

where the constant C is determined by the asymptotic curve of density, velocity, and condition of hydrostatic
pressure in the limit flow at infinity.

2. Long-Wave Approximation. In the problem considered, stratification is determined by the dimen-
sionless Boussinesq parameters

σ = N2h2/g, μ = (ρ1 − ρ2)/ρ2,

where σ characterizes the density gradient in the inhomogeneous layer, and μ indicates the jump in density on
the interface. In the present work, we assume that the ratio σ/μ is small and use the parameter σ as a modeling
parameter. Following [9], we consider the long-wave approximation, where the ratio of the vertical and horizontal
scales of motion is of the order of

√
σ. Using the undisturbed depth h2 of the upper layer as the vertical scale

and the fluid discharge in the jth layer as the scale for the stream function ψ = ψj in this layer, we introduce the
dimensionless variables

(
√
σ x, y, η) = h2 (x̄, ȳ, η̄), ψj = ujhjψ̄j (j = 1, 2).
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Then, the following equations should be satisfied in the lower layer:

σψ1xx + ψ1yy = 0 [−r < y < η(x)],

ψ1(x,−r) = −1, ψ1(x, η(x)) = 0
(3)

(r = h1/h2). (Hereinafter, the bar in the dimensionless quantities x̄, ȳ, η̄, and ψ̄j is omitted.) Correspondingly, the
equations for the upper layer take the form

σψ2xx + ψ2yy + λ2(ψ2 − y) = σ(ψ2
2x + ψ2

2y − 1)/2 [η(x) < y < 1],

ψ2(x, η(x)) = 0, ψ2(x, 1) = 1,
(4)

where λ = Nh2/u2. The dynamic condition on the interface implies the relation

rF 2
1 (σr2ψ2

1x + r2ψ2
1y − 1) + 2η = F 2

2 (σψ2
2x + ψ2

2y − 1) [y = η(x)], (5)

where Fj are the densimetric Froude numbers:

F 2
j = ρju

2
j/(g(ρ1 − ρ2)hj) (j = 1, 2).

The dimensionless parameter λ has the meaning of the inverse densimetric Froude number for an exponentially
stratified upper layer of the fluid, because it satisfies the relation λ2 = σgh2/u

2
2. The parameters σ, μ, λ, and F2

are related by the expression

λ2 = σ/(μF 2
2 ), (6)

which plays an important role in the analysis of the asymptotic behavior of the solution as σ → 0. Note that the
boundary condition (5) is equivalent to the integral relation

μr3F 2
1

η∫
−r

(
ψ2

1y − σψ2
1x

)
dy − (1 + μ)η2 + μrF 2

1 (η − r)

+

1∫
η

e−σψ2

{
μF 2

2 (1 + ψ2
2y − σψ2

2x) − 2σ−1(eσψ2 −1) + 2(ψ2 − y)
}
dy

= 2μF 2
2 + 2(λ−2 + σ−2)(1 − σ − e−σ), (7)

which is the dimensionless version of Eq. (2) with the pressure eliminated by virtue of the Bernoulli equation.
Constructing an asymptotic expansion for the solution of Eqs. (3) and (4) in the form ψj = ψ

(0)
j + σψ

(1)
j + O(σ2)

(j = 1, 2) leads to the following expressions for the coefficients:

ψ
(0)
1 =

y − η

r + η
, ψ

(0)
2 = y − η

sinλ(1 − y)
sinλ(1 − η)

,

ψ
(1)
1 = −1

6

( 1
r + η

)
xx

{
(y + r)3 − (r + η)2(y + r)

}
,

ψ
(1)
2 =

sinλ(1 − y)
2λ

( η

sinλ(1 − η)

)
xx

{
(1 − η) cot λ(1 − η) − (1 − y) cot λ(1 − y)

}

+
1
6
η2

{sinλ(η − y) + sinλ(1 − η) − sinλ(1 − y)
sin3 λ(1 − η)

+
sin2 λ(1 − y)
sin2 λ(1 − η)

− sinλ(1 − y)
sinλ(1 − η)

}
+
η(η − y)

2
sinλ(1 − y)
sinλ(1 − η)

.

Substituting these asymptotic formulas for the functions ψ1 and ψ2 into Eq. (7) and truncating terms with accuracy
of the order of O(σ2), we obtain a model of the second-order approximation of the shallow water theory. As a result,
we obtain an ordinary differential equation for the function η

σ
(dη
dx

)2

=
η2(A0 +A1η +A2η

2 +A3η
3)

B0 +B1η +B2η2 +B3η3 +B4η4
, (8)
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where the coefficients Aj and Bj are trigonometric polynomials with respect to the variable η. These coefficients
are expressed via the quantities sn = sinnλ(1 − η) and cn = cosnλ(1 − η) with integer and semi-integer values of
n by the following formulas:

A0 = 18rλs21{[2(F 2
1 − 1) − σF 2

2 ]s21 + λF 2
2 s2},

A1 = 2λF 2
2 {s21[λ(9 − 2σr)s2 − s21(6rλ

2 + 9σ)] − 2s21/2[rσλs1 + 3rσλ2(1 + 2c1)]} − 36λs41,

A2 = 4λ2F 2
2 s

2
1/2{3σλ(r − 1)(1 + 2c1) − 4(3λs21 + σs2)c21/2 − σs1},

A3 = 12λ3σF 2
2 s

2
1/2(1 + 2c1),

B0 = 12λr3F 2
1 s

4
1 + 9rF 2

2 (2λ− s2)s21,

B1 = 9F 2
2 {rλ(2λ− s2)s2 − [2(r − 1)λ+ s2]s21},

B2 = 9λF 2
2 {λ[r(s21 − 3) + 2]s2 + 4s41 + 2rλ2 − 2(rλ2 + 3)s21},

B3 = −9λ2F 2
2 {(c21 + 2)s2 + 2λ(r − 1)c21}, B4 = −18λ3F 2

2 c
2
1.

Equation (8) is an analog of the model proposed by Ovsyannikov [3] for a two-layer fluid with constant densities
in the layers. This equation is further used as the basic model for analyzing the behavior of solutions of the
solitary-wave type in the limit as σ → 0.

3. Dispersion Properties. In nonlinear media with dispersion, solitary waves usually propagate with
velocities greater than the phase velocities of linear waves. Therefore, to describe the region of supercritical values
of parameters in Eqs. (3)–(5), we consider the properties of the spectrum of the problem on small perturbations
in a one-dimensional flow with the stream functions ψ1 = r−1y + w1(x, y) and ψ2 = y + w2(x, y). Linearization
of the equations with respect to the functions η and wj and construction of solutions in the form of wave packets
η(x) = a exp (ikx) and wj(x, y) = Wj(y) exp (ikx) yield the dispersion relation

Δ(k;F, σ, λ) = 0 (9)

with the function Δ defined by the formula

Δ = F 2
1

√
σ rk coth

√
σ rk + F 2

2

(√
λ2 − σk2 − σ2/4 cot

√
λ2 − σk2 − σ2/4 − σ/2

)
− 1.

As the problem of finding the normal modes for Eqs. (3)–(5) is self-adjoint, the square of the wavenumber k2, which
plays the role of the eigenvalue in this problem, is always real. Thus, the roots k of Eq. (9) can be only real or
imaginary. By virtue of the even character of the dispersion function with respect to k, these roots form symmetric
pairs on the coordinate axes of the complex k plane, and only the root k = 0 can be multiple. The dispersion
function is extended to the real domain λ2 < σk2 + σ2/4 by the real expression

Δ = F 2
1

√
σ rk coth

√
σ rk + F 2

2

(√
σk2 − λ2 + σ2/4 coth

√
σk2 − λ2 + σ2/4 − σ/2

)
− 1.

The spectrum of the linearized problem is formed by the points in the plane of the Froude number pairs F = (F1, F2)
for which the dispersion relation (9) has at least one pair of real roots k. This set is symmetric with respect to the
coordinate axes of the plane F , because the function Δ is even with respect to each of the parameters Fj . Depending
on the number of pairs of real roots of Eq. (9) corresponding to this point F , the whole spectrum is divided into a
countable set of subdomains containing spectra of individual wave modes. As the point F is disturbed, the real roots
appear as a result of their transition from the imaginary axis to the real axis through the value k = 0; therefore,
the boundaries of the modal domains are defined by the branches of the curve described by the equation

Δ(0;F, σ, λ(F2)) = F 2
1 + F 2

2

(√
σ/(μF 2

2 ) − σ2/4 cot
√
σ/(μF 2

2 ) − σ2/4 − σ/2
)
− 1 = 0 (10)

[here we take into account Eq. (6) for λ = λ(F2)]. The outer boundary of the spectrum is defined by the branches
that have horizontal asymptotes F2 = ±F

(∗)
2 as |F1| → ∞, where

F
(∗)
2 =

√
σ/μ

/√
π2 + σ2/4. (11)

The part of the spectrum with points having more than one pair of real wavenumbers is located inside the band
|F2| < F

(∗)
2 whose thickness is of the order of

√
σ. In the limit, as σ → 0, this part containing the spectra of the
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higher wave modes disappears. At σ = 0, there remains the spectrum of linear waves in the fluid with constant
densities ρ1 and ρ2 in the layers. This spectrum is generated by the wavenumbers of one mode and coincides with
the circle F 2

1 +F 2
2 � 1. It can be easily noted that the boundary of the spectrum of the disturbed problem described

by Eq. (10) transforms to a unit circle nonuniformly with respect to (F1, F2). This nonuniformity arises because of
the presence of the small parameter σ at the leading power of F2 in the dispersion relation (9) [with allowance for
Eq. (6) for λ] and, correspondingly, in Eq. (10).

Note that the presence of the small parameter σ in the left side of the differential equation (8) does not
prevent uniform validity (in terms of x) of the asymptotic approximation in the plane of the flow. The reason is a
special structure of the right side of Eq. (8) whose coefficients turn out to be consistent with the spectral properties
of the original problem. Indeed, using the expansions of the coefficients Aj and Bj in powers of η, we can write
Eq. (8) in the form

ση2
x = η2[γ0 + γ1η +O(η2)]. (12)

Here the coefficient γ0(F, σ, λ) has the form γ0 = α0/β0, where

α0 = 12
{
F 2

1 + F 2
2

(
λ cot λ− σ

2

)
− 1

}
, β0 = 4r2F 2

1 + 3F 2
2

2λ− sin 2λ
λ sin2 λ

,

and the expression for the coefficient γ1 = (α1β0 − α0β1)/β2
0 involves the quantities

α1 = −48(F 2
1 − 1)λ cot λ− F 2

2 (36λ2 cot 2 λ− 12r−1λ cot λ− 8λ2) − 12r−1

− σF 2
2

[
6r−1 +

(8λ sin2(λ/2)
sin3 λ

− 64
3

)
λ cot λ+

4λ sin2 (λ/2)
3 sin3 λ

(
1 +

3λ
sinλ

)]
,

β1 = −16r2F 2
1 λ cot λ− 6F 2

2

(
2 − 2λ− sin 2λ

2rλ sin2 λ

)
.

It should be noted that it is the dependence of the coefficient γ0 on the parameters Fj that contains information on
the dispersion properties of the original problem. Indeed, as the value of β0 is rigorously positive for F 2

1 + F 2
2 �= 0,

and the relation α0 = 12Δ+O(σ2) is valid for α0, the pattern of the zero-level lines γ0(F, σ, λ(F2)) = 0 reproduces
both the shape and the multimodal structure of the spectrum obtained for the basic Euler equations with accuracy
to O(σ2). The solitary waves of the leading mode branching off from the waveless regime at the boundary points
of the spectrum are necessarily supercritical in the sense of satisfaction of the inequality γ0 > 0. Note, for points F
located outside the spectrum and satisfying the inequality γ0(F, σ, λ(F2)) > 0, the parameter λ takes the values in
the interval 0 < λ < π. In the supercritical domain external with respect to the spectrum, all roots of the dispersion
relation (9) are imaginary. Let k = ±iκ (κ > 0) be the pair of roots closest to the point k = 0. The dimensionless
parameter ε =

√
σ κ yields the indicator of exponential decay of solitary waves in the initial dimensional variables:

η(x) = O(exp (−ε|x|/h2)) as |x| → ∞. It follows from the expansion of the dispersion function

Δ(0;F, σ, λ) − Δ(iκ;F, σ, λ) =
(1

3
r2F 2

1 + F 2
2

2λ− sin 2λ
4 sin2 λ

)
ε2 +O(σ2)

that ε has the order of σm/2 as σ → 0 on the level lines of the dispersion function Δ(0;F, σ, λ(F2)) = C if the
constant C = Mσm (M > 0 and m > 0) has a power dependence on the small parameter σ. Therefore, in
constructing the long-wave asymptotics, it should be taken into account that the original dimensional variable x
has to be scaled x/h2 = σ−m/2 xm/2 (xm/2 is the corresponding slow dimensionless variable) near the spectrum
boundary on the level lines Δ = Mσm with a given exponent m. In this sense, the dimensionless variable x = x1/2

is used in the original equations (3)–(5) and in the basic approximate equation (8).
4. Bifurcation of Solitary Waves. The scale of the wavelength of the order σ−1/2 taken into account in

deriving Eq. (8) is natural for the points F on the level lines γ0(F, σ, λ(F2)) = Mσ. For such points, extension of
the unknown function η = ση0 in Eq. (12) in the lowest-order approximation yields the equation( dη0

dx1/2

)2

= η2
0(M + γ1η0). (13)

Correspondingly, in the general case (γ1 �= 0), the branching solitary waves have the form of the classical Korteweg–
de Vries solitons with the amplitude of the order O(σ), i.e., of the second order with respect to the parameter ε,
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which is the modulus of the wavenumber. Waves of elevation and depression are formed in the ranges of parameters
satisfying the inequalities γ1 < 0 and γ1 > 0, respectively. Indeed, for γ1 �= 0, the order of smallness of the constant
defining the level lines of the coefficient γ0 is not very important. With the wave length scale consistent with the
exponent m > 0, the limit equation retains the form of Eq. (13), and the wave amplitude is quadratic with respect
to the wavenumber, independent of the choice of the family of level lines.

At points where the coefficient γ1 vanishes, the contribution to the model equation can be made by terms
with higher powers of η from the right side of Eq. (12). In addition, the form of the equation for the leading-order
term can change, depending on the exponent of the constant defining the level lines of the coefficient γ0. Let us
find the approximate expressions for the coordinates of the bifurcation points of the special type mentioned, which
are points of intersection of the curves γ0(F, σ, λ(F2)) = 0 and γ1(F, σ, λ(F2)) = 0 in the plane (F1, F2). Note, by
virtue of the first equation of this system, the second equation is equivalent to the relation α1(F, σ, λ(F2)) = 0. In
turn, the approximate equation α1(F, 0, λ(F2)) = 0 can be used instead of this relation. Using to the variable λ
as an independent parameter and eliminating the Froude number F1, we obtain an equation that has the following
form with accuracy of the order O(σ2):

σ

μ

(3 cot λ
rλ

+ 3 cot 2 λ+ 2
)
− 3
r

= 0.

In the interval λ ∈ (0, π), this equation has two roots asymptotically close to the ends of this interval: λ1 =√
(1 + r)σ/μ+O(σ) and λ2 = π− √

rσ/μ+O(σ). In the limit, as σ → 0, the root λ1 corresponds to the point P1

with the coordinates

F1 = r/
√

(1 + r)r, F2 = 1/
√

1 + r. (14)

This point P1 (Fig. 2a) is located in the first quadrant of the plane F ; this is a bifurcation point for internal waves
of the smooth bore type and plateau-shaped solitary waves in a two-layer fluid [7, 8]. Let us consider the level lines
γ0(F, σ, λ(F2)) = Mσ2 in the vicinity of this point. Extension of the variables x1 =

√
σx1/2 and η = ση0 in Eq. (8)

leads to the following equation for the leading term of the asymptotics:(dη0
dx1

)2

= η2
0(M + θ1η0 + θ2η

2
0). (15)

Here θ1 = γ′1σ(F, 0, λ(F2)) and θ2 = γ2(F, 0, λ(F2)); γ2 is the coefficient at η2 in expansion (12). For θ2 > 0, Eq. (15)
yields solutions of the solitary-wave type if the polynomial of the fourth power with respect to η0 in its right side
has two simple real non-zero roots η0 = a1 and η0 = a2 in addition to the double root η0 = 0. If these roots
coincide and yield one more double root a = a1 = a2 (|a| =

√
M/θ2 ), the wave on the interface has the form of a

smooth bore with the profile η0(x1) = (a/2)[1 + tanh (
√
M x1)]. If the sample roots a1 and a2 are little different

from each other, the solitary waves have the form of a broad plateau. In the limit, as a1 → a2, the fronts of such
a wave acquire the form of a smooth bore, which approximately describes one half of a symmetric plateau-shaped
solitary wave. Thus, this particular case, as well as the above-considered general case, retains the basic asymptotic
properties of weakly nonlinear waves typical for a standard two-layer model [10].

Let us now consider the root λ2, which generates the point P2 with the coordinates

F1 = 1 +
1
2π

√
σ

rμ
+O(σ), F2 =

1
π

√
σ

μ
+

√
r σ

π2μ
+O(σ3/2).

This point is located on the spectrum boundary in an immediate vicinity of the horizontal asymptote l of this
boundary (Fig. 2b). The special properties of this bifurcation point are caused by the presence of weak continuous
stratification in the upper layer of the fluid; this point has no analogs in the spectrum of the model with constant
densities in the layers. In the vicinity of the branch of the curve Γ1: γ1(F, 0, λ(F2)) = 0 passing through the
point P2, the solutions of Eq. (8) display an unusual behavior. We can demonstrate this fact by using approximate
parametrization of the curve Γ1

F1 = 1 + [9r + μ(3 − 2π2r3)τ2 + 2π2μ2r2τ4]
√
σ

24πμrτ
, F2 =

√
σ/μ

π − τ
√
σ

with a parameter τ =
√
r/μ+ t

√
σ. This parametrization is chosen so that the expressions for the Froude number

at t = 0 give two first terms in the expansion of the coordinates of the point P2 with respect to fractional powers of
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Fig. 2. Spectrum of the leading mode for σ = 0.000 08, μ = 0.003, and r = 1.2 (a) and a zoomed-in
fragment of this spectrum (b).

the parameter σ. Applying the scaling of the variables x = σ1/4x1/4 and η = σ1/2η0 in Eq. (8) for such points F ,
we obtain the lowest-order equation( dη0

dx1/4

)2

= η3
0

R2 + 3R(πη0 +R)3 − 3(πη0 +R)4

r3(πη0 +R)4 + 3r2/(2π2μ2)
, (16)

where R =
√
r/μ. In contrast to Eqs. (13) and (15) considered above, the right side of Eq. (16) has a triple root

η0 = 0; for this reason, the solutions of Eq. (16) have a power rather than an exponential asymptotics of decay as
|x1/4| → ∞. This is especially clearly seen for the simplified model equation (dη0/dx1/4)2 = αη3

0(1 − η0/β), where
the constants α and β are fixed by linear interpolation of the rational function in the right side of Eq. (16) in the
interval (0, η∗), where η∗ is the non-zero root of the numerator. The corresponding solution of the solitary-wave
type has the form η0(x) = 4β/(4 + αβx2).

5. Wave Profiles. Let us consider the above-obtained asymptotics of small solutions in the context of
approximate models of finite-amplitude waves, also related to Eq. (8). Far from the spectrum, the parameter ε(σ)
characterizing wave decay at infinity, generally speaking, is not small; therefore, in Eq. (8), we can pass to the
dimensionless variable x = x0 corresponding to identical vertical and horizontal linear scales. As Eq. (6) predicts
that the parameter λ for fixed Froude numbers F1 and F2 �= 0 has the order of smallness

√
σ, we expand the

coefficients Aj and Bj with respect to the powers of λ and retain terms of the lowest power in the numerator and
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Fig. 3. Profiles of solitary waves for different points in the plane of the Froude numbers (σ = 0.000 08,
μ = 0.003, and r = 1.2): (a) point A (F1 = 1.223 and F2 = 0.15); (b) point B (F1 = 1.25 and
F2 = 0.06); (c) point C (F1 = 1.020 84 and F2 = 0.055 03); the solid curves show the solution of
Eq. (8); the dotted curves show the solution of Eq. (18); the dashed curve is the solution of Eq. (17);
the dash-and-dotted curve is the solution of Eq. (16).

denominator of the right side of Eq. (8). As a result of the limit transition as λ→ 0, we obtain an equation with a
fractional-rational right side of the fourth power with respect to η( dη

dx0

)2

=
3η2[η2 + (F 2

2 − rF 2
1 − 1 + r)η + r(F 2

1 + F 2
2 − 1)]

r3F 2
1 (1 − η) + F 2

2 (r + η)
, (17)

which is the equation of the second-order approximation of the shallow water theory for a two-layer fluid with
constant densities in the layers [3] written in dimensionless form. For points of the first quadrant of the plane
(F1, F2), Eq. (17) has solutions of the solitary-wave type in the area of the supercritical domain F 2

1 + F 2
2 > 1

bounded by the straight line b:
√
rF1 + F2 =

√
1 + r (see Fig. 2a). The straight line b is the geometric location

of points for which Eq. (17) has solutions of the smooth bore type. The bore bifurcates from the main flow at
the tangential point P1 of the straight line b and the spectrum boundary (unit circle). In beak-type domains in
the vicinity of the bifurcation point with coordinates (14), the parameters of solitary waves are characterized by a
special self-similar dependence on the Froude number [8]. In the model with weak continuous stratification, this
property is manifested as stratification of a narrow region of weakly nonlinear asymptotics by level lines of the
dispersion function with a power order m = 2 with respect to the parameter σ. Both for Eq. (8) and for Eq. (17),
the equation for the leading term of the solution asymptotics near the point P1 has the structure of Eq. (15). The
two-layer fluid approximation (17) retains its accuracy with respect to model (8) in the domain including the points
A and B (see Fig. 2a). The profiles of the solitary waves calculated for Eqs. (17) and (8) almost coincide (Fig. 3a).

In the area of the supercritical domain, which is located near the asymptote of the spectrum boundary (see
Fig. 2b), the parameter λ is not small; according to Eq. (11), however, the Froude number F2, which has the order
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of O(
√
σ ), turns out to be small. Taking this fact into account and making σ tend to zero in the right side of

Eq. (8), we obtain
r3F 2

1 η
2
x = 3η2(r(F 2

1 − 1) − η). (18)
In its form, Eq. (18) coincides with the known Boussinesq–Rayleigh equation for solitary surface waves in a ho-
mogeneous fluid layer with a dimensionless depth r and Froude number F1 > 1. This means that the leading
mode of internal waves for Eq. (8) behaves here as the model of surface waves for a homogeneous lower fluid with
the Froude number F1 = u1/

√
g1h1 [g1 = (ρ1 − ρ2)g/ρ1 is the reduced acceleration due to gravity]. This limit

regime is also consistent with Eq. (17), which also yields Eq. (18) for F2 → 0. Figure 3b shows that the solitary
wave profiles calculated by models (8), (17), and (18) for the point B (see Fig. 2), where the approximation of
the two-layer fluid is still suitable, are in good agreement. Figure 3a shows that the area of applicability of the
Boussinesq–Rayleigh equation is rather narrow as the Froude number F2 increases. It is also of interest that this
model rapidly loses accuracy as the Froude number F1 decreases, because of approaching the singular point P2 on
the spectrum boundary. Figure 3c shows that the profiles of solitary waves for the basic model (8) and Eq. (16) are
fairly close, whereas the wave amplitude for Eq. (18) differs by two orders of magnitude. For surface solitary waves,
the Boussinesq–Rayleigh equation is known to provide the best fit in the vicinity of the bifurcation point F1 = 1.
In the case considered, this is prevented by the change in the leading order of nonlinearity in Eq. (8) on the curve
Γ1 near the point P2. The neighborhood of this singular point has to be studied specially, because the effect of the
absence of exponential asymptotics of decay of solitary waves for the approximate equation (16) on asymptotics of
solutions of more generic models is not clear.

Conclusions. The effect of weak continuous stratification in one layer of a two-layer fluid on parameters
of stationary waves on the interface is considered within the framework of the second-order approximation of the
shallow water theory. It is demonstrated that branching of solitary waves of the leading mode from the basic
piecewise-constant flow may follow one of the three scenarios, where the bifurcations are similar to the regime of
branching of the classical Korteweg–de Vries solitary waves in the first case, and to the regime of solitary waves
of the plateau-shaped and smooth bore types in a fluid with constant densities in the layers. The third type of
branching observed for the Froude numbers F1 ≈ 1 and F2 = O(

√
σ ) occurs only in the presence of continuous

stratification. A typical feature for this scenario is the transition from the exponential decay of the solution as
|x| → ∞ to the power decay in the leading order with respect to σ near the bifurcation point. The transition to the
parametric domain of finite-amplitude waves is consecutively described by a series of asymptotic models including
the Boussinesq–Rayleigh model for small values of F2 and the Ovsyannikov model for moderate values of F2.
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